Part Number Hot Search : 
9410B 9V5036S3 ULCE15A EA09123 GD4070B 527280J CPH3223 UGF12HT
Product Description
Full Text Search
 

To Download HAT3021R-EL-E Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 HAT3021R
Silicon N/P Channel Power MOS FET Power Switching
REJ03G0415-0200 Rev.2.00 Oct.06.2004
Features
* Capable of 4.5 V gate drive * Low drive current * High density mounting
Outline
SOP-8
78 DD 56 DD 5 76
2 G
4 G
8
3 12 S1 S3
4
1, 3 Source 2, 4 Gate 5, 6, 7, 8 Drain
Nch
Pch
Absolute Maximum Ratings
(Ta = 25C)
Item Drain to source voltage Gate to source voltage Drain current Drain peak current Body-drain diode reverse drain current Channel dissipation Channel temperature Symbol VDSS VGSS ID ID(pulse)Note1 IDR Pch Note2 Tch Ratings Nch 80 20 3.4 20.4 3.4 1.5 150 Pch -80 20 -2.6 -15.6 -2.6 1.5 Unit V V A A A W C C
Storage temperature Tstg -55 to +150 Notes: 1. PW 10 s, duty cycle 1 % 2. 1 Drive operation; When using the glass epoxy board (FR4 40 x 40 x 1.6 mm), PW 10s
Rev.2.00, Oct.06.2004, page 1 of 10
HAT3021R
Electrical Characteristics
(Ta = 25C) * N Channel
Item Drain to source breakdown voltage Gate to source breakdown voltage Gate to source leak current Zero gate voltage drain current Gate to source cutoff voltage Static drain to source on state resistance Forward transfer admittance Input capacitance Output capacitance Reverse transfer capacitance Total gate charge Gate to source charge Gate to drain charge Turn-on delay time Rise time Turn-off delay time Fall time Body-drain diode forward voltage Body-drain diode reverse recovery time Notes: 4. Pulse test Symbol V(BR)DSS V(BR)GSS IGSS IDSS VGS(off) RDS(on) RDS(on) |yfs| Ciss Coss Crss Qg Qgs Qgd td(on) tr td(off) tf VDF trr Min 80 20 -- -- 1.0 -- -- 4.2 -- -- -- -- -- -- -- -- -- -- -- -- Typ -- -- -- -- -- 90 100 7.0 400 57 24 7.3 1.1 1.3 6.0 4.0 39 3.5 0.83 30 Max -- -- 10 1 2.5 115 145 -- -- -- -- -- -- -- -- -- -- -- 1.08 -- Unit V V A A V m m S pF pF pF nC nC nC ns ns ns ns V ns Test Conditions ID = 10 mA, VGS = 0 IG = 100 A, VDS = 0 VGS = 16 V, VDS = 0 VDS = 80 V, VGS = 0 VDS = 10 V, I D = 1 mA ID = 1.7 A, VGS = 10 V Note4 ID = 1.7 A, VGS = 4.5 V Note4 ID = 1.7 A, VDS = 10 V Note4 VDS = 10 V VGS = 0 f = 1 MHz VDD = 25 V VGS = 10 V ID = 3.4 A VGS = 10 V, ID = 1.7 A VDD 30 V RL = 17.6 Rg = 4.7 IF = 3.4 A, VGS = 0 Note4 IF = 3.4 A, VGS = 0 diF/ dt = 100 A/ s
Rev.2.00, Oct.06.2004, page 2 of 10
HAT3021R * P Channel
Item Drain to source breakdown voltage Gate to source breakdown voltage Gate to source leak current Zero gate voltage drain current Gate to source cutoff voltage Static drain to source on state resistance Forward transfer admittance Input capacitance Output capacitance Reverse transfer capacitance Total gate charge Gate to source charge Gate to drain charge Turn-on delay time Rise time Turn-off delay time Fall time Body-drain diode forward voltage Body-drain diode reverse recovery time Notes: 4. Pulse test Symbol V(BR)DSS V(BR)GSS IGSS IDSS VGS(off) RDS(on) RDS(on) |yfs| Ciss Coss Crss Qg Qgs Qgd td(on) tr td(off) tf VDF trr Min -80 20 -- -- -1.0 -- -- 2.0 -- -- -- -- -- -- -- -- -- -- -- -- Typ -- -- -- -- -- 165 200 3.3 930 90 56 16 2.1 2.4 20 12 40 5.5 -0.83 30 Max -- -- 10 -1 -2.5 210 290 -- -- -- -- -- -- -- -- -- -- -- -1.08 -- Unit V V A A V m m S pF pF pF nC nC nC ns ns ns ns V ns Test Conditions ID = -10 mA, VGS = 0 IG = 100 A, VDS = 0 VGS = 16 V, VDS = 0 VDS = -80 V, VGS = 0 VDS = -10 V, I D = -1 mA ID = -1.3 A, VGS = -10 V Note4 ID = -1.3 A, VGS = - 4.5 V Note4 ID = -1.3 A, VDS = -10 V Note4 VDS = -10 V VGS = 0 f = 1MHz VDD = -25 V VGS = -10 V ID = -2.6 A VGS = -10 V, ID = -1.3 A VDD -30 V RL = 23.0 Rg = 4.7 IF = -2.6 A, VGS = 0 Note4 IF = -2.6 A, VGS = 0 diF/ dt =100A/s
Rev.2.00, Oct.06.2004, page 3 of 10
HAT3021R
Main Characteristics
* N Channel
Power vs. Temperature Derating 4.0
Pch (W)
100 Test Condition : When using the glass epoxy board (FR4 40x40x1.6 mm), PW < 10 s
Maximum Safe Operation Area
3.0
ID (A)
10
PW
Channel Dissipation
Drain Current
1
DC
=1
10 10 s 0 1m s s
0m s( 1s
2.0
Op
era
tio
0.1 Operation in
this area is limited by RDS(on)
n(
ho
PW
t)
1
No
t 0 se 4 )
1.0
0.01
Ta = 25C
0
50
100
150 Ta (C)
200
0.001 1 shot Pulse 0.1 1
10
100
Ambient Temperature
Drain to Source Voltage VDS (V) Note 4 : When using the glass epoxy board (FR4 40x40x1.6 mm)
Typical Output Characteristics 10 4.5 V 10 V 3.4 V 10
Typical Transfer Characteristics VDS = 10 V Pulse Test
ID (A) Drain Current
ID (A)
3.2 V
Drain Current
5
3.0 V
5
VGS = 2.8 V Pulse Test 0 5 Drain to Source Voltage VDS 10 (V)
0
Tc = 75C 25C -25C 2 3 4 Gate to Source Voltage VGS
5 (V)
Drain to Source Voltage VDS(on) (mV)
500
Pulse Test 400
300 200
Static Drain to Source on State Resistance RDS(on) (m)
Drain to Source Saturation Voltage vs Gate to Source Voltage
Static Drain to Source on State Resistance vs. Drain Current 1000
100
VGS = 4.5 V 10 V
ID = 2 A 1A 0.5 A 15 5 10 20 Gate to Source Voltage VGS (V)
100
0
10 0.1
Pulse Test 1 Drain Current 10 ID (A) 100
Rev.2.00, Oct.06.2004, page 4 of 10
HAT3021R
Static Drain to Source on State Resistance vs. Temperature 250 Pulse Test 200 ID = 0.5 A, 1 A, 2 A Forward Transfer Admittance vs. Drain Current
Static Drain to Source on State Resistance RDS(on) (m)
Forward Transfer Admittance |yfs| (S)
100 30 10 3 1 0.3 0.1
Tc = -25C
150 VGS = 4.5 V 100 0.5 A, 1 A, 2 A
25C 75C
50 0 -25
10 V
0.03 0.01 0.01 0.03 0.1 0.3
VDS = 10 V Pulse Test 1 3 10 Drain Current ID (A)
0 25 50 75 100 125 150 Case Temperature Tc (C)
Reverse Recovery Time trr (ns)
100
Body-Drain Diode Reverse Recovery Time
1000 500
Typical Capacitance vs. Drain to Source Voltage Ciss
50
Capacitance C (pF)
200 100 50 20 10 5 2
Coss Crss
20 di / dt = 100 A / s VGS = 0, Ta = 25C 1 3 Reverse Drain Current 10 IDR (A)
10
VGS = 0 f = 1 MHz 0 10 20 30 40 50
Drain to Source Voltage VDS (V) Switching Characteristics 20 (V) 100 50 Switching Time t (ns) tf td(on) tr td(off)
Dynamic Input Characteristics VDS (V) 100 ID = 3.4 A VGS VDS VDD = 50 V 25 V 10 V
Drain to Source Voltage
VGS
80
16
60
12
Gate to Source Voltage
20 10 5
40
8
20
VDD = 50 V 25 V 10 V 2 4 6 8 Gate Charge Qg (nC)
4 0 10
0
2 VGS = 10 V, VDD = 30 V Rg = 4.7 , duty 1 % 1 0.1 0.2 1 2 0.5 5 Drain Current ID (A)
10
Rev.2.00, Oct.06.2004, page 5 of 10
HAT3021R
Reverse Drain Current vs. Source to Drain Voltage 10
Reverse Drain Current IDR (A)
10 V
5
5V
VGS = 0 V, -5 V
Pulse Test 0 0.4 0.8 1.2 1.6 2.0 Source to Drain Voltage VSD (V)
Normalized Transient Thermal Impedance vs. Pulse Width
Normalized Transient Thermal Impedance s (t)
10
1
D=1 0.5
0.2 0.1 0.05
0.1
0.02
0.01
1 0.0 se pul hot 1s
ch - f(t) = s (t) x ch - f ch - f = 125C/W, Ta = 25C When using the glass epoxy board (FR4 40x40x1.6 mm)
PDM
D=
PW T
0.001
PW T
0.0001 10
100
1m
10 m
100 m 1 10 Pulse Width PW (S)
100
1000
10000
Switching Time Test Circuit Vin Monitor Rg D.U.T. RL Vin Vin 10 V V DS = 30 V Vout Monitor
Switching Time Waveform 90% 10% 10% 90% td(on) tr 90% td(off) tf 10%
Vout
Rev.2.00, Oct.06.2004, page 6 of 10
HAT3021R * P Channel
Power vs. Temperature Derating 4.0 Pch (W) Test Condition : When using the glass epoxy board (FR4 40x40x1.6 mm), PW < 10 s 3.0 100 Maximum Safe Operation Area
10 s
ID (A)
10
PW
Channel Dissipation
Drain Current
1
DC
=1
10 0 1 m s s
2.0
Op
0m
era
s(
1s
0.1
Operation in this area is 0.01 limited by RDS(on) Ta = 25C
tio
ho
n(
t)
PW
1.0
1Note 0s 4 )
0
50
100
150 Ta (C)
200
0.001 1 shot Pulse 0.1 1
10
100
Ambient Temperature
Drain to Source Voltage VDS (V) Note 4 : When using the glass epoxy board (FR4 40x40x1.6 mm)
Typical Output Characteristics -5.0 -10 V -4.5 V ID (A) -3.0 V -4 ID (A) -5
Typical Transfer Characteristics VDS = 10 V Pulse Test
-3
Drain Current
-2.5 VGS = -2.8 V
Drain Current
-2 Tc = 75C 25C -25C 0 -2 -4 -6 Gate to Source Voltage -8 VGS -10 (V)
-1
Pulse Test 0 -5 Drain to Source Voltage VDS -10 (V)
Drain to Source Voltage VDS(on) (mV)
-1000
Pulse Test -800
Static Drain to Source on State Resistance RDS(on) (m)
Drain to Source Saturation Voltage vs Gate to Source Voltage
Static Drain to Source on State Resistance vs. Drain Current 1000 Pulse Test
VGS = -4.5 V 100 -10 V
-600
-400 -200
ID = -2 A -1 A -0.5 A
0
-4 -8 -12 Gate to Source Voltage
-16 -20 VGS (V)
10 -0.1
-1 Drain Current
-10 ID (A)
Rev.2.00, Oct.06.2004, page 7 of 10
HAT3021R
Static Drain to Source on State Resistance vs. Temperature 500 Pulse Test 400 ID = -0.5 A, -1 A 300 VGS = 4.5 V 200 -0.5 A, -1 A, -2 A 10 V -2 A Forward Transfer Admittance vs. Drain Current Tc = -25C
Static Drain to Source on State Resistance RDS(on) (m)
Forward Transfer Admittance |yfs| (S)
10 5 2 1 0.5
25C 0.2 0.1 0.05 0.02 0.01 0 -0.03 -0.1 -0.3 Drain Current VDS = 10 V Pulse Test -1 -3 -10 ID (A) 75C
100 0 -25
0 25 50 75 100 125 150 Case Temperature Tc (C)
Body-Drain Diode Reverse Recovery Time Reverse Recovery Time trr (ns) 100
10000 5000
Typical Capacitance vs. Drain to Source Voltage VGS = 0 f = 1 MHz Ciss
50
Capacitance C (pF)
2000 1000 500 200 100 50 20 10
20 di / dt = -100 A / s VGS = 0, Ta = 25C -0.3 -1 -3 -10 Reverse Drain Current IDR (A) Dynamic Input Characteristics
Coss Crss 0 -10 -20 -30 -40 -50
10 -0.1
Drain to Source Voltage VDS (V) Switching Characteristics 100 (V) 50 Switching Time t (ns) td(off) tr td(on) tf
VDS (V)
0 VDD = -50 V -25 V -10 V
0
Drain to Source Voltage
VGS
-20
-4
-40 VDS
-60
VDD = -50 V -25 V -10 V
VGS
-8
Gate to Source Voltage
20 10 5 2 1 -0.1
-12
-80 ID = -2.6 A -100 0 4 8 12 16 Gate Charge Qg (nC)
-16
VGS = -10 V, VDS = -30 V Rg = 4.7 , duty 1 % -1 Drain Current -10 ID (A)
-20 20
Rev.2.00, Oct.06.2004, page 8 of 10
HAT3021R
Reverse Drain Current vs. Source to Drain Voltage -5.0
Reverse Drain Current IDR (A)
-10 V -5 V
-2.5 VGS = 0V, 5 V
Pulse Test 0 -0.4 -0.8 -1.2 -1.6 -2.0 Source to Drain Voltage VSD (V)
Normalized Transient Thermal Impedance vs. Pulse Width
Normalized Transient Thermal Impedance s (t)
10
1
D=1 0.5
0.2
0.1
0.1
0.05
0.02
0.01
ch - f(t) = s (t) x ch - f ch - f = 125C/W, Ta = 25C When using the glass epoxy board (FR4 40x40x1.6 mm)
uls e
PDM PW T
0.01
1s h p ot
D=
PW T
0.001 10
100
1m
10 m
100 m
1
10
100
1000
10000
Pulse Width PW (S)
Switching Time Test Circuit Vin Monitor Rg D.U.T. RL Vout Monitor Vin
Switching Time Waveform
10% 90%
Vin -10 V
V DD = -30 V Vout td(on)
90% 10% tr td(off)
90% 10% tf
Rev.2.00, Oct.06.2004, page 9 of 10
HAT3021R
Package Dimensions
As of January, 2003
Unit: mm
4.90 5.3 Max 5 8
1
4
3.95
*0.22 0.03 0.20 0.03
1.75 Max
0.75 Max
6.10 - 0.30
+ 0.10
1.08 0 - 8
0.14 - 0.04
+ 0.11
1.27
+ 0.67 0.60 - 0.20
*0.42 0.08 0.40 0.06
0.15 0.25 M
*Dimension including the plating thickness Base material dimension Package Code JEDEC JEITA Mass (reference value) FP-8DA Conforms -- 0.085 g
Ordering Information
Part Name HAT3021R-EL-E Quantity 2500 pcs Taping Shipping Container
Note: For some grades, production may be terminated. Please contact the Renesas sales office to check the state of production before ordering the product.
Rev.2.00, Oct.06.2004, page 10 of 10
Sales Strategic Planning Div.
Keep safety first in your circuit designs!
Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap. Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party. 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein. The information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com). 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein. 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
RENESAS SALES OFFICES
Refer to "http://www.renesas.com/en/network" for the latest and detailed information. Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501 Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900 Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071 Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999 Renesas Technology (Shanghai) Co., Ltd. Unit2607 Ruijing Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952 Renesas Technology Singapore Pte. Ltd. 1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001
http://www.renesas.com
(c) 2004. Renesas Technology Corp., All rights reserved. Printed in Japan.
Colophon .2.0


▲Up To Search▲   

 
Price & Availability of HAT3021R-EL-E

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X